# Rapid LC/MS/MS Detection of Opiates, Opioids, Benzodiazepines, Amphetamines, and Cannabinoids in Urine

Lauren E. Frick and Carrie J. Adler Agilent Technologies, Inc Lexington, MA

## MSACL US 2018 POSTER # 22B



### Introduction

Liquid chromatography-mass spectrometry (LC/MS/MS) offers a sensitive method of determining the presence or absence of exogenous compounds in biological samples. It is generally more sensitive and more specific than other techniques used to achieve this goal. Wide adoption of LC/MS/MS for this purpose has been inhibited by the length of typical analytical methods looking at large panels of compounds. Here, an anlytical method has been developed to assess for the presence of 36 compounds representing several different classes and concentrations in a total method runtime (injection to injection) of 2.3 minutes.

A single calibrator, a positive sample (1.5 x calibrator concentration), and a negative sample (0.25 x calibrator concentration) were created by spiking drug standards into clean human urine. Blanks (solvent and matrix), the calibrator, samples, and controls were prepared for analysis through a simple dilution into water containing internal standards. Injection, separation of analytes, column cleaning, and column reequilibration were accomplished 2.3 minutes. One transition was monitored for each compound of interest, and 6 isotopically labeled internal standards were included to account for differential suppression across the chromatogram.

## Experimental

#### Table 4: MS transitions and dMRM acquisition details.

| Table 4. No transitions and dimini dequisition details. |              |                  |                |                   |                   |            |                     |     |          |
|---------------------------------------------------------|--------------|------------------|----------------|-------------------|-------------------|------------|---------------------|-----|----------|
| Compound<br>Name                                        | ISTD?        | Precursor<br>Ion | Product<br>Ion | Ret Time<br>(min) | Delta Ret<br>Time | Fragmentor | Collision<br>Energy | CAV | Polarity |
| 6-MAM                                                   |              | 328.2            | 165            | 0.53              | 0.5               | 132        | 44                  | 2   | Positive |
| 7-Aminoclonazepam                                       |              | 286.1            | 121            | 0.77              | 0.5               | 107        | 32                  | 4   | Positive |
| Alprazolam                                              |              | 309.1            | 281            | 1.09              | 0.5               | 137        | 28                  | 2   | Positive |
| Amphetamine                                             |              | 136.1            | 91.1           | 0.63              | 0.5               | 82         | 16                  | 2   | Positive |
| Benzoylecgonine                                         |              | 290.1            | 168            | 0.7               | 0.5               | 82         | 16                  | 2   | Positive |
| Buprenorphine                                           |              | 468.3            | 55.2           | 1.1               | 0.4               | 167        | 64                  | 2   | Positive |
| Codeine                                                 |              | 300.2            | 152            | 0.46              | 0.5               | 122        | 80                  | 2   | Positive |
| Diazepam                                                |              | 285.1            | 193            | 1.15              | 0.4               | 117        | 32                  | 4   | Positive |
| EDDP                                                    |              | 278.2            | 234            | 0.95              | 0.46              | 132        | 32                  | 4   | Positive |
| Fentanyl                                                |              | 337.2            | 105.1          | 0.95              | 0.44              | 102        | 44                  | 2   | Positive |
| Fentanyl D5                                             | $\checkmark$ | 342.3            | 105.1          | 0.95              | 0.5               | 112        | 44                  | 2   | Positive |
| Flunitrazepm                                            |              | 314.1            | 268            | 1.04              | 0.5               | 157        | 24                  | 2   | Positive |
| Hydrocodone                                             |              | 300.2            | 199            | 0.53              | 0.5               | 152        | 28                  | 2   | Positive |
| Hydromorphone                                           |              | 286.2            | 185            | 0.35              | 0.5               | 132        | 28                  | 2   | Positive |
| JWH-018                                                 |              | 342.2            | 214.1          | 1.35              | 0.4               | 100        | 24                  | 4   | Positive |
| JWH-073                                                 |              | 328.2            | 200.1          | 1.3               | 0.4               | 100        | 24                  | 4   | Positive |

## **Results and Discussion**

#### In-House Matrix Matched Sample Example Results

| III Hodde III     |            |                                     |            |                              |               |               |          |
|-------------------|------------|-------------------------------------|------------|------------------------------|---------------|---------------|----------|
|                   | Calibrator | rator Neg Sample (1/4 x calibrator) |            | Pos Sample (1.5x calibrator) |               |               |          |
|                   | ng/mL      | Expected                            | Calculated | Result                       | Expected      | Calculated    | Result   |
|                   |            | concentration                       |            |                              | concentration | concentration |          |
| 6-MAM             | 100        | 25                                  | 26.7       | negative                     | 150           | 159.7         | positive |
| 7-Aminoclonazepam | 100        | 25                                  | 25.5       | negative                     | 150           | 158.4         | positive |
| Alprazolam        | 100        | 25                                  | 25.6       | negative                     | 150           | 162.2         | positive |
| Amphetamine       | 100        | 25                                  | 27.9       | negative                     | 150           | 151.9         | positive |
| Benzoylecgonine   | 100        | 25                                  | 26.0       | negative                     | 150           | 159.8         | positive |
| Buprenorphine     | 5          | 1.25                                | 1.3        | negative                     | 7.5           | 8.2           | positive |
| Codeine           | 100        | 25                                  | 26.2       | negative                     | 150           | 158.2         | positive |
| Diazepam          | 100        | 25                                  | 26.0       | negative                     | 150           | 164.9         | positive |
| EDDP              | 100        | 25                                  | 26.8       | negative                     | 150           | 155.7         | positive |
| Fentanyl          | 2          | 0.5                                 | 0.5        | negative                     | 3             | 3.0           | positive |
| Flunitrazepm      | 100        | 25                                  | 25.2       | negative                     | 150           | 155.9         | positive |
| Hydrocodone       | 100        | 25                                  | 25.6       | negative                     | 150           | 162.0         | positive |
| Hydromorphone     | 100        | 25                                  | 26.8       | negative                     | 150           | 156.3         | positive |
| JWH-018           | 20         | 5                                   | 6.0        | negative                     | 30            | 36.3          | positive |
| JWH-073           | 20         | 5                                   | 7.1        | negative                     | 30            | 35.8          | positive |
| Lorazepam         | 100        | 25                                  | 28.2       | negative                     | 150           | 164.1         | positive |
| MDA               | 200        | 50                                  | 56.6       | negative                     | 300           | 308.3         | positive |
| MDEA              | 200        | 50                                  | 52.3       | negative                     | 300           | 322.3         | positive |
| MDMA              | 200        | 50                                  | 52.7       | negative                     | 300           | 320.9         | positive |
| Methadone         | 100        | 25                                  | 25.6       | negative                     | 150           | 168.8         | positive |
| Methamphetamine   | 100        | 25                                  | 25.9       | negative                     | 150           | 158.7         | positive |
| Midazolam         | 100        | 25                                  | 26.5       | negative                     | 150           | 164.9         | positive |
| Morphine          | 100        | 25                                  | 24.5       | negative                     | 150           | 157.9         | positive |
| Naloxone          | 50         | 12.5                                | 13.9       | negative                     | 75            | 79.6          | positive |
| Nitrazepam        | 100        | 25                                  | 26.9       | negative                     | 150           | 156.1         | positive |
| Norbuprenorphine  | 20         | 5                                   | 5.8        | negative                     | 30            | 35.3          | positive |
| Nordiazepam       | 100        | 25                                  | 26.1       | negative                     | 150           | 155.4         | positive |
| Norfentanyl       | 20         | 5                                   | 5.0        | negative                     | 30            | 32.1          | positive |
| Oxazepam          | 100        | 25                                  | 28.4       | negative                     | 150           | 155.7         | positive |
| Oxycodone         | 100        | 25                                  | 26.1       | negative                     | 150           | 161.8         | positive |
| Oxymorphone       | 100        | 25                                  | 27.2       | negative                     | 150           | 154.0         | positive |
| PCP               | 25         | 6.25                                | 6.7        | negative                     | 37.5          | 38.3          | positive |
| Temazepam         | 100        | 25                                  | 25.9       | negative                     | 150           | 157.0         | positive |
| THC-COOH          | 20         | 5                                   | 5.1        | negative                     | 30            | 31.9          | positive |
| Zolpidem          | 20         | 5                                   | 5.4        | negative                     | 30            | 31.1          | positive |
| Zopiclone         | 20         | 5                                   | 5.2        | negative                     | 30            | 32.2          | positive |
|                   |            |                                     |            | 5                            |               |               |          |

Calibration used a single concentration for each compound. An Average of Response Factors was used to generate a calibration equation. Samples were considered positive if they quantified above the calibrator and negative if they quantified below. Sample sets were prepared over three days (in triplicate once and in singleton twice) to ensure reproducibility.

## Experimental

#### Sample Prep

Clean human urine was spiked with standards (Cerilliant) of the 36 compounds to achieve the calibration sample, the negative sample, and the positive sample. Diluent was created by spiking water with 6 deuterated internal standard compounds (Cerilliant) to concentrations of 2.5 ng/mL (oxycodone, methamphetamine, and fentanyl) or 10 ng/mL (morphine, oxazepam, and THC-COOH). 50  $\mu$ L of sample, blank, or control (UTAK) were mixed with 950  $\mu$ L of water (double blanks) or diluent (single blanks, samples, and controls). After being vortexed for 30 seconds, 5  $\mu$ L were injected on to the LC/MS system.

#### LC/MS/MS Analytical Method

The LC/MS/MS system consisted of a 1290 binary pump, a thermostatted multisampler, a temperature controlled column compartment and a 6470 triple quadrupole mass spectrometer. Conditions used for the compound separation and column cleanup/reequilibration are given in Tables 1 and 2.

**Table 2: Gradient** 

%R

20

98

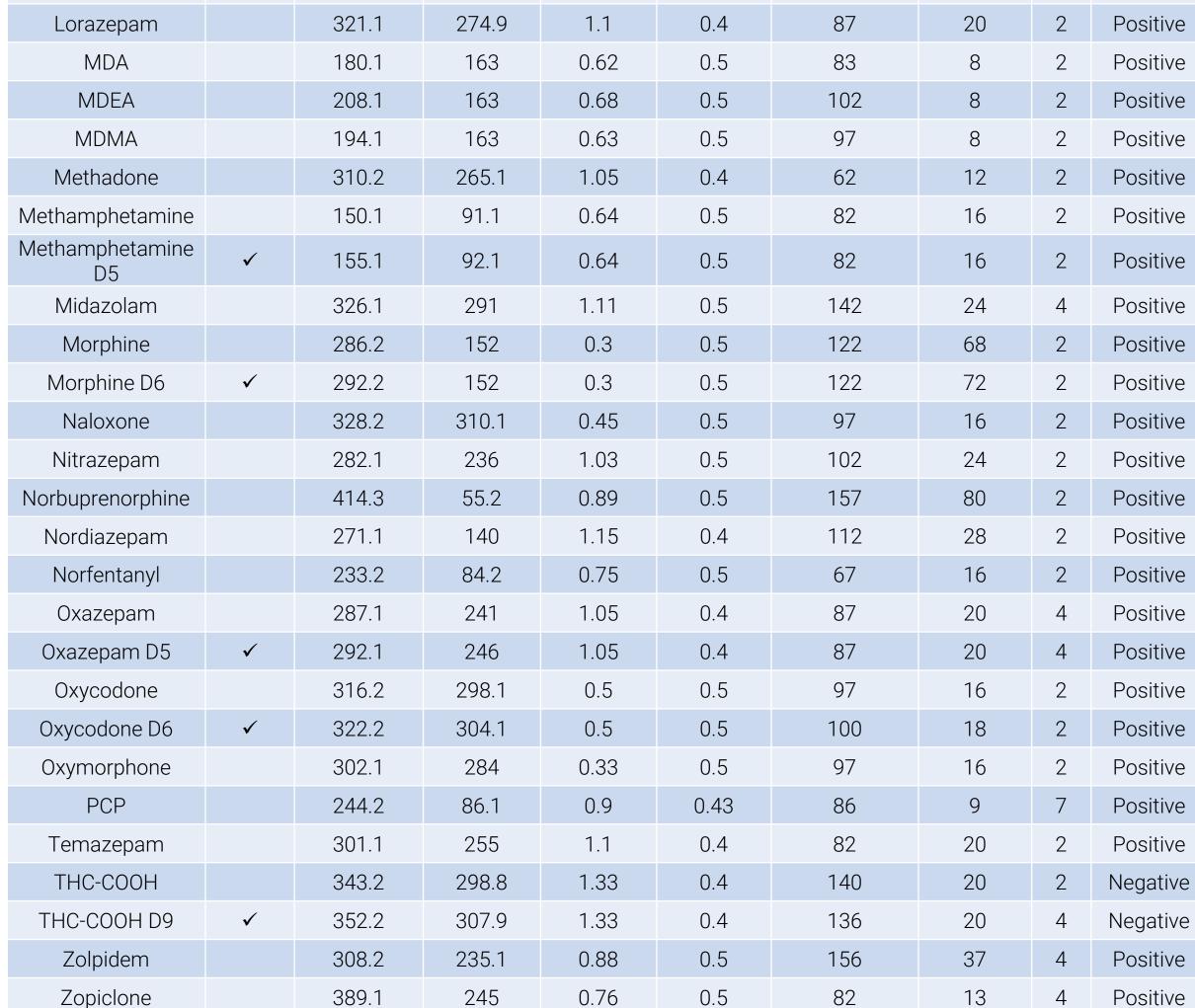
98

20

Time

(min)

0


0.9

1.4

1.41

#### Table 1: LC Parameters

Analytical Column Agilent Poroshell 120 EC-C18, 2.1 x 50



## **Results and Discussion**

## **Commercial Control Results**

Commercially available control samples were prepared and analyzed over three days, in singleton on two days and in triplicate on one day, for a total of 5 datasets.

|                   | Calibrator | UTA           | K DAU 1        | UTAK DAU 2    |                | UTAK PM 100   |                |
|-------------------|------------|---------------|----------------|---------------|----------------|---------------|----------------|
|                   | ng/mL      | Expected conc | Result         | Expected conc | Result         | Expected conc | Result         |
| 6-MAM             | 100        |               | negative (5/5) |               | negative (5/5) |               | negative (5/5) |
| 7-Aminoclonazepam | 100        |               | negative (5/5) |               | negative (5/5) |               | negative (5/5) |
| Alprazolam        | 100        |               | negative (5/5) |               | negative (5/5) |               | negative (5/5) |
| Amphetamine       | 100        |               | negative (5/5) |               | negative (5/5) |               | negative (5/5) |
| Benzoylecgonine   | 100        | 50            | negative (5/5) | 112.5         | positive (5/5) |               | negative (5/5  |
| Buprenorphine     | 5          |               | negative (5/5) |               | negative (5/5) | 100           | positive (5/5) |
| Codeine           | 100        |               | negative (5/5) |               | negative (5/5) | 100           | negative (5/5  |
| Diazepam          | 100        |               | negative (5/5) |               | negative (5/5) |               | negative (5/5  |
| EDDP              | 100        |               | negative (5/5) |               | negative (5/5) | 100           | positive (5/5) |
| Fentanyl          | 2          |               | negative (5/5) |               | negative (5/5) | 10            | positive (5/5) |
| Flunitrazepm      | 100        |               | negative (5/5) |               | negative (5/5) |               | negative (5/5  |
| Hydrocodone       | 100        |               | negative (5/5) |               | negative (5/5) | 100           | negative (5/5  |
| Hydromorphone     | 100        |               | negative (5/5) |               | negative (5/5) | 100           | positive (5/5) |
| JWH-018           | 20         |               | negative (5/5) |               | negative (5/5) |               | negative (5/5  |
| JWH-073           | 20         |               | negative (5/5) |               | negative (5/5) |               | negative (5/5  |
| Lorazepam         | 100        |               | negative (5/5) |               | negative (5/5) |               | negative (5/5  |
| MDA               | 200        |               | negative (5/5) |               | negative (5/5) |               | negative (5/5  |
| MDEA              | 200        |               | negative (5/5) |               | negative (5/5) |               | negative (5/5  |
| MDMA              | 200        |               | negative (5/5) |               | negative (5/5) |               | negative (5/5  |
| Methadone         | 100        | 50            | negative (5/5) | 112.5         | positive (5/5) | 100           | positive (5/5  |
| Methamphetamine   | 100        | 225           | positive (5/5) | 375           | positive (5/5) |               | negative (5/5  |
| Midazolam         | 100        |               | negative (5/5) |               | negative (5/5) |               | negative (5/5  |
| Morphine          | 100        | 225           | positive (5/5) | 375           | positive (5/5) | 100           | positive (5/5  |
| Naloxone          | 50         |               | negative (5/5) |               | negative (5/5) |               | negative (5/5  |
| Nitrazepam        | 100        |               | negative (5/5) |               | negative (5/5) |               | negative (5/5  |
| Norbuprenorphine  | 20         |               | negative (5/5) |               | negative (5/5) | 100           | positive (5/5  |
| Nordiazepam       | 100        |               | negative (5/5) |               | negative (5/5) |               | negative (5/5  |
| Norfentanyl       | 20         |               | negative (5/5) |               | negative (5/5) | 10            | negative (5/5  |
| Oxazepam          | 100        | 50            | negative (5/5) | 75            | negative (5/5) |               | negative (5/5  |
| Oxycodone         | 100        |               | negative (5/5) |               | negative (5/5) | 100           | negative (5/5  |
| Oxymorphone       | 100        |               | negative (5/5) |               | negative (5/5) | 100           | positive (5/5  |
| PCP               | 25         | 5             | negative (5/5) | 9.375         | negative (5/5) |               | negative (5/5  |
| Temazepam         | 100        |               | negative (5/5) |               | negative (5/5) |               | negative (5/5  |
| THC-COOH          | 20         | 10            | negative (5/5) | 15            | positive (5/5) |               | negative (5/5  |
| Zolpidem          | 20         |               | negative (5/5) |               | negative (5/5) |               | negative (5/5  |
| Zopiclone         | 20         |               | negative (5/5) |               | negative (5/5) |               | negative (5/5  |

|                      | mm, 2.7 µm                                                   |
|----------------------|--------------------------------------------------------------|
| Injection Volume     | 5 µL                                                         |
| Mobile Phase A       | H <sub>2</sub> O + 5 mM ammonium formate + 0.01% formic acid |
| Mobile Phase B       | Methanol + 0.01% formic acid                                 |
| Needle Wash          | 25:25:50 Isopropanol:Methanol:Water                          |
| Multisampler Temp    | 4 °C                                                         |
| Column Temp          | 55 °C                                                        |
| Flow Rate            | 0.9 mL/min                                                   |
| Stop Time            | 1.9 min                                                      |
| Post Time            | Off                                                          |
| Overlapped Injection | On, at 1.8 min                                               |
| Time Filtering       | 0.026                                                        |
| Divert to Waste      | 0 to 0.25 min                                                |
|                      |                                                              |

The 6470 triple quadrupole mass spectrometer was used to detect the 36 compounds in dynamic MRM mode. Compromise MS source conditions were as in Table 3 and dMRM acquisition parameters as in Table 4. Positive/negative switching was utilized to monitor compounds of both polarities in a single injection. Unit resolution was used in both MS1 and MS2. The total cycle time was ~2.3 minutes injection to injection. Data were acquired with MassHunter Acquisition B.08.02 and analyzed with MassHunter Quantitative Analysis B.08.00 and Qualitative Analysis B.07.00.

#### Table 3: 6470 Agilent JetStream ESI Source Parameters

|                       | Positive Mode | Negative Mode | Units |
|-----------------------|---------------|---------------|-------|
| Gas Temp              | 325           | 325           | °C    |
| Gas Flow              | 9             | 9             | L/min |
| Nebulizer<br>Pressure | 30            | 30            | psi   |
| Sheath Gas Temp       | 380           | 380           | °C    |
| Sheath Gas Flow       | 11            | 11            | L/min |
| Capillary Voltage     | 3750          | 3500          | V     |
| Nozzle Voltage        | 0             | 1500          | V     |
| Delta EMV             | 0             | 600           | V     |

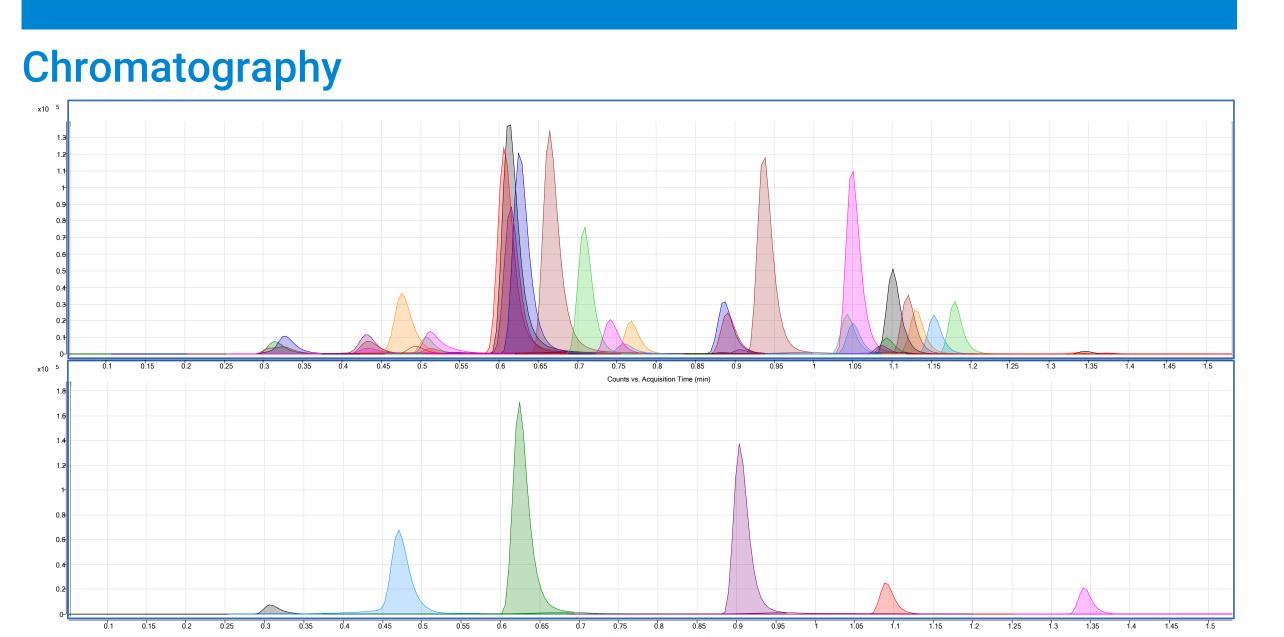
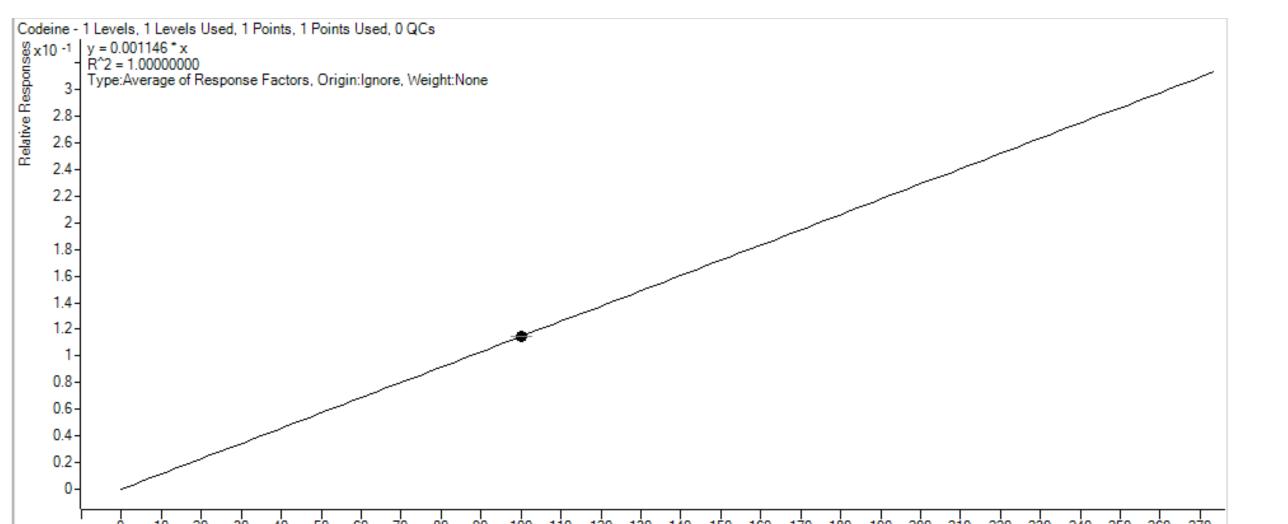




Figure 1: Example dMRM chromatograms showing elution of the 36 compounds (top) and 6 internal standards (bottom).



## Conclusions

•A 2.3 minute LC/MS/MS method has been developed for analytical detection of the presence or absence of exogenous compounds in urine.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 Concentration (ng/ml)

Figure 2: Example single-point calibration curve

•Single point calibration was sufficient to differentiate positive from negative samples.

• Preparation and analysis of commercial controls gave consistent results over multiple days and multiple runs within a single day.

•Alternative sources of human urine will be evaluated for interferences.

For Research Use Only. Not for use in diagnostic procedures.

